Aurora Borealis - Northern Lights

The aurora is a glow observed in the night sky, usually in the polar zone. For this reason some scientists call it a "polar aurora" (or "aurora polaris"). In northern latitudes, it is known as "aurora borealis" which is Latin for "northern dawn" since in Europe especially, it often appears as a reddish glow on the northern horizon as if the sun were rising from an unusual direction. The aurora borealis is also called the "northern lights". The aurora borealis most often occurs from September to October and March to April. Its southern counterpart, "Aurora Australis", has similar properties.

The aurora is now known to be caused by electrons of typical energy of 1-15 keV, i.e. the energy obtained by the electrons passing through a voltage difference of 1,000-15,000 volts. The light is produced when they collide with atoms of the upper atmosphere, typically at altitudes of 80-150 km. It tends to be dominated by emissions of atomic oxygen--the greenish line at 557.7 nm and (especially with electrons of lower energy and higher altitude) the dark-red line at 630.0 nm. Both these represent "forbidden" transitions of atomic oxygen from energy levels which (in absence of collisions) persist for a long time, accounting for the slow brightening and fading (0.5-1 sec) of auroral rays. Many other lines can also be observed, especially those of molecular nitrogen, and these vary much faster, revealing the true dynamic nature of the aurora.

Auroras can also be observed in the ultra-violet (UV) light, a very good way of observing it from space (but not from ground--the atmosphere absorbs UV). The "Polar" spacecraft even observed it in X-rays. The image is very rough, but precipitation of high-energy electrons can be identified.

Typically the aurora appears either as a diffuse glow or as "curtains" that approximately extend in the east-west direction. At some times, they form "quiet arcs", at others ("active aurora") they evolve and change constantly. Each curtain consists of many parallel rays, each lined up with the local direction of the magnetic field lines, suggesting that aurora is shaped by the Earth's magnetic field, Indeed, satellites show auroral electrons to be guided by magnetic field lines, spiralling around them while moving earthwards.

The curtains often show folds called "striations". When the field line guiding a bright auroral patch leads to a point directly above the observer, the aurora may appear as a "corona" of diverging rays, an effect of perspective.

In 1741 Hiorter and Celsius first noticed other evidence for magnetic control, namely, large magnetic fluctuations occurred whenever the aurora was observed overhead. This indicates (it was later realized) that large electric currents were associated with the aurora, flowing in the region where auroral light originated. Kristian Birkeland (1903) deduced that the currents flowed in the east-west directions along the auroral arc, and such currents, flowing from the dayside towards (approximately) midnight were later named "auroral electrojets"


a corona

Still more evidence for a magnetic connection are the statistics of auroral observations. Elias Loomis (1860) and later in more detail Hermann Fritz (1881) established that the aurora appeared mainly in the "auroral zone", a ring-shaped region of approx. radius 2500 km around the magnetic pole of the Earth, not its geographic one. It was hardly ever seen near that pole itself. The instantaneous distribution of auroras ("auroral oval", Yasha Feldstein 1963) is slightly different, centred about 3-5 degrees nightward of the magnetic pole, so that auroral arcs reach furthest equator-ward around midnight.


Aurora Australis

the solar wind and magnetosphere

The Earth is constantly immersed in the solar wind, a rarefied flow of hot plasma (gas of free electrons and positive ions) emitted by the sun in all directions, a result of the million-degree heat of the sun's outermost layer, the solar corona. The solar wind usually reaches Earth with a velocity around 400 km/s, density around 5 ions/cc and magnetic field intensity around 2–5 nT (nanoteslas; the Earth's surface field is typically 30,000–50,000 nT). These are typical values. During magnetic storms, in particular, flows can be several times faster; the interplanetary magnetic field (IMF) may also be much stronger.

The IMF originates on the sun, related to the field of sunspots, and its field lines (lines of force) are dragged out by the solar wind. That alone would tend to line them up in the sun-earth direction, but the rotation of the Sun skews them (at Earth) by about 45 degrees, so that field lines passing Earth may actually start near the western edge ("limb") of the visible sun.

The Earth's magnetosphere is the space region dominated by its magnetic field. It forms an obstacle in the path of the solar wind, causing it to be diverted around it, at a distance of about 70,000 km (before it reaches that boundary, typically 12,000–15,000 km upstream, a bow shock forms). The width of the magnetospheric obstacle, abreast of Earth is typically 190,000 km, and on the night side a long "magnetotail" of stretched field lines extends to great distances.

frequency of occurrence

The aurora is a common occurrence in the ring-shaped zone. It is occasionally seen in temperate latitudes, when a strong magnetic storm temporarily expands the auroral oval. Large magnetic storms are most common during the peak of the 11-year sunspot cycle, or during the 3 years after that peak. However, within the auroral zone the likelihood of an aurora occurring depends mostly on the slant of IMF lines (known as Bz, pronounced "bee-sub-zed"), being greater with southward slants.

Geomagnetic storms that ignite auroras actually happen more often during the months around the equinoxes. It is not well understood why geomagnetic storms are tied to the Earth's seasons when polar activity is not. It is known, however, that during spring and autumn, the earth's and the interplanetary magnetic field link up. At the magnetopause, Earth's magnetic field points north. When Bz becomes large and negative (i.e., the IMF tilts south) it can partially cancel Earth's magnetic field at the point of contact. South-pointing Bz's open a door through which energy from the solar wind can reach Earth's inner magnetosphere.

The peaking of Bz during this time is a result of geometry. The interplanetary magnetic field comes from the Sun and is carried outward the solar wind. Because the Sun rotates the IMF has a spiral shape. Earth's magnetic dipole axis is most closely aligned with the Parker spiral in April and October. As a result, southward (and northward) excursions of Bz are greatest then.

However, Bz is not the only influence on geomagnetic activity. The Sun's rotation axis is tilted 7 degrees with respect to the plane of Earth's orbit. Because the solar wind blows more rapidly from the Sun's poles than from its equator, the average speed of particles buffeting Earth's magnetosphere waxes and wanes every six months. The solar wind speed is greatest -- by about 50 km/s, on average -- around Sept. 5th and March 5th when Earth lies at its highest heliographic latitude.

Still, neither Bz nor the solar wind can fully explain the seasonal behaviour of geomagnetic storms. Those factors together contribute only about one-third of the observed semi-annual variation.

the origin of the aurora

The ultimate energy source of the aurora is undoubtedly the solar wind flowing past the Earth.

Both the magnetosphere and the solar wind consist of plasma, which can conduct electricity. It is well known (since Faraday's work around 1830) that if two electric conductors are immersed in a magnetic field and one moves relative to the other, while a closed electric circuit exists which threads both conductors, then an electric current will (usually) arise in that circuit. Electric generators of dynamos make use of this process ("the dynamo effect"), but the conductors can also be plasmas or other fluids.

In particular the solar wind and the magnetosphere are two electrically conducting fluids with such relative motion, and should be able (in principle) to generate electric currents by "dynamo action", in the process also extracting energy from the flow of the solar wind. The process is hampered by the fact plasmas conduct easily along magnetic field lines but not so perpendicular to them. It is therefore important that a temporary magnetic interconnection be established between the field lines of the solar wind and those of the magnetosphere, by a process known as magnetic reconnection. It happens most easily with a southward slant of interplanetary field lines, because then field lines north of Earth approximately match the direction of field lines near the north magnetic pole (namely, into the earth), and similarly near the southern pole. Indeed, active auroras (and related "substorms") are much more likely at such times.

Electric currents originating in such fashion apparently give auroral electrons their energy. The magnetospheric plasma has an abundance of electrons: some are magnetically trapped, some reside in the magnetotail, and some exists in the upwards extension of the ionosphere, which may extend (with diminishing density) some 25,000 km around the Earth.

Bright auroras are generally associated with Birkeland currents (Schield et al., 1969; Zmuda and Armstrong, 1973) which flow down into the ionosphere on one side of the pole and out on the other. In between, some of the current connects directly through the ionospheric E layer (125 km), the rest ("region 2") detours, leaving again through field lines closer to the equator and closing through the "partial ring current" carried by magnetically trapped plasma. The ionosphere is an ohmic conductor, so such currents require a driving voltage, which some dynamo mechanism can supply. Electric field probes in orbit above the polar cap suggest voltages of the order of 40,000 volts, rising up to more than 200,000 volts during intense magnetic storms.

Ionospheric resistance has a complex nature, and leads to a secondary Hall current flow. By a strange twist of physics, the magnetic disturbance on the ground due to the main current almost cancels out, so most of the observed effect of auroras is due to a secondary current, the auroral electrojet. An auroral electrojet index (measured in nanotesla) is regularly derived from ground data, and serves as a general measure of auroral activity.

However, ohmic resistance is not the only obstacle to current flow in this circuit. The convergence of magnetic field lines near Earth creates a "mirror effect" which turns back most of the down-flowing electrons (where currents flow upwards), inhibiting current-carrying capacity. To overcome this, part of the available voltage appears along the field line ("parallel to the field"), helping electrons overcome that obstacle by widening the bundle of trajectories reaching Earth; a similar "parallel voltage" is used in "tandem mirror" plasma containment devices. A feature of such voltage is that it is concentrated near Earth (potential proportional to field intensity; Persson, 1963) and indeed, as deduced by Evans (1974) and confirmed by satellites, most auroral acceleration occurs below 10,000 km. Another indicator of parallel electric fields along field lines are beams of upwards flowing O+ ions observed on auroral field lines.

While this mechanism is probably the main source of the familiar auroral arcs, formations conspicuous from the ground, more energy might go to other, less prominent types of aurora, e.g. the diffuse aurora (below) and the low-energy electrons precipitated in magnetic storms.

Some O+ ions ("conics") also seem accelerated in different ways by plasma processes associated with the aurora. These ions are accelerated by plasma waves, in directions mainly perpendicular to the field lines. They therefore start at their own "mirror points" and can travel only upwards. As they do so, the "mirror effect" transforms their directions of motion, from perpendicular to the line to lying on a cone around it, which gradually narrows down.)

In addition, the aurora and associated currents produce a strong radio emission around 150 kHz known as auroral kilometric radiation (AKR, discovered in 1972). Ionospheric absorption makes AKR observable from space only.

These "parallel voltages" accelerate electrons to auroral energies and seem to be a major source of aurora. Other mechanisms have also been proposed, in particular, Alfvén waves, wave modes involving the magnetic field first noted by Hannes Alfvén (1942), which have been observed in the lab and in space. The question is however whether this might just be a different way of looking at the above process, because this approach does not point out a different energy source, and many plasma bulk phenomena can also be described in terms of Alfvén waves.

Other processes are also involved in the aurora, and much remains to be learned. Auroral electrons created by large geomagnetic storms often seem to have energies below 1 keV, and are stopped higher up, near 200 km. Such low energies excite mainly the red line of oxygen, so that often such auroras are red. On the other hand, positive ions also reach the ionosphere at such time, with energies of 20-30 keV, suggesting they might be an "overflow" along magnetic field lines of the copious "ring current" ions accelerated at such times, by processes different from the ones described above.